Nanosecond laser systems
Fixed wavelength nanosecond lasers
| Model | Repetition rate | Pulse duration | Max pulse energy | Special feature |
|---|---|---|---|---|
| NL200 | 10 – 2500 Hz | <10 ns | 4 mJ at 1064 nm | Compact and robust |
| NL230 | 100 Hz | 3 – 6 ns | 190 mJ at 1064 nm | Diode pumped only |
| NL300 | 20 Hz | 3 – 6 ns | 1100 mJ at 1064 nm | Versatile, compact nanosecond laser |
| Model | Repetition rate | Pulse duration | Max pulse energy | Special feature |
|---|
Downloads
Publications
Effects of pressure and substrate temperature on the growth of Al-doped ZnO films by pulsed laser deposition
Al-doped ZnO (AZO) thin films were deposited on p-Si (100) by pulsed laser deposition from a composite ceramic target (ZnO:Al2O3) by using 355 nm laser at different O2 background pressure and substrate temperature. Upon ablation at laser fluence of 2 Jcm−2, plasma plume consists of Zn neutrals and ions, Al neutrals and O neutral are formed. As the O2 background pressure increases from 3 Pa to 26 Pa, the energy of the plasma species are moderated. The results show that the ions density and velocity reduced significantly above 13 Pa. The velocity of the ions reduced from 14 kms−1 to 11 kms−1 at 13 Pa, while the ions energy reduced from 63 eV to 42 eV respectively. Below 13 Pa, crystalline and homogeneous AZO nanostructured films were formed. Above 13 Pa, the process results in low crystallinity films with higher porosity. The resistivity of the films also increases from 0.1 ohmcm to 24 ohmcm as the pressure increased. At fixed O2 background pressure of 3 Pa, the adatom mobility of atoms on the substrates is altered by substrate heating. The resistivity of the films decreased to 10–3 ohmcm when the substrates are heated to 100 °C–300 °C during deposition. The films with highest carrier density of 1020 cm−3 and carrier mobility of 13 cmV−1 s−1 are achieved at 200 °C.
Engineering electrochemical sensors using nanosecond laser treatment of thin gold film on ITO glass
Direct generation of gold nanoparticles on ITO glass using a nanosecond laser is presented and the electrochemical properties of the gold modified ITO electrodes for detection of the ascorbic acid are analyzed. Gold nanoparticles were generated by nanosecond laser pulse irradiation of thin, 3 – 30 nm thick, gold films. It was found that diameters and the number of generated nanoparticles per unit area strongly depends on the thickness of the gold film when it is less than 10 nm. Furthermore, experiments have shown that the influence of laser processing parameters (the laser pulse energy and pulse number) to the size, the distribution and the area density of generated gold nanoparticles on ITO glass is negligible. Characterization of the electrochemical properties of the gold modified ITO electrodes by nanosecond laser showed that the fabricated electrodes could be employed in electrochemical sensing. Therefore, the demonstrated generation of gold nanoparticles on ITO by using the nanosecond laser approach opens new opportunities for the development of highly sensitive and low-cost electrochemical sensors.
Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range
Light is an exceptional external stimulus for establishing precise control over the properties and functions of chemical and biological systems, which is enabled through the use of molecular photoswitches. Ideal photoswitches are operated with visible light only, show large separation of absorption bands and are functional in various solvents including water, posing an unmet challenge. Here we show a class of fully-visible-light-operated molecular photoswitches, Iminothioindoxyls (ITIs) that meet these requirements. ITIs show a band separation of over 100 nm, isomerize on picosecond time scale and thermally relax on millisecond time scale. Using a combination of advanced spectroscopic and computational techniques, we provide the rationale for the switching behavior of ITIs and the influence of structural modifications and environment, including aqueous solution, on their photochemical properties. This research paves the way for the development of improved photo-controlled systems for a wide variety of applications that require fast responsive functions.
Photoacoustic/Ultrasound/Optical Coherence Tomography Evaluation of Melanoma Lesion and Healthy Skin in a Swine Model
The marked increase in the incidence of melanoma coupled with the rapid drop in the survival rate after metastasis has promoted the investigation into improved diagnostic methods for melanoma. High-frequency ultrasound (US), optical coherence tomography (OCT), and photoacoustic imaging (PAI) are three potential modalities that can assist a dermatologist by providing extra information beyond dermoscopic features. In this study, we imaged a swine model with spontaneous melanoma using these modalities and compared the images with images of nearby healthy skin. Histology images were used for validation.
Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm
We optimized the parameters of a laser-produced plasma source based on a solid-state Nd: YAG laser (λ = 1.06 nm, pulse duration 4 ns, energy per pulse up to 500 mJ, repetition rate 10 Hz, lens focus distance 45 mm, maximum power density of laser radiation in focus 9 × 1011 W/cm2) and a double-stream Xe/He gas jet to obtain a maximum of radiation intensity around 11 nm wavelength. It was shown that the key factor determining the ionization composition of the plasma is the jet density. With the decreased density, the ionization composition shifts toward a smaller degree of ionization, which leads to an increase in emission peak intensity around 11 nm. We attribute the dominant spectral feature centred near 11 nm originating from an unidentified 4d-4f transition array in Xe+10…+13 ions. The exact position of the peak and the bandwidth of the emission line were determined. We measured the dependence of the conversion efficiency of laser energy into an EUV in-band energy with a peak at 10.82 nm from the xenon pressure and the distance between the nozzle and the laser focus. The maximum conversion efficiency (CE) into the spectral band of 10 – 12 nm measured at a distance between the nozzle and the laser beam focus of 0.5 mm was CE = 4.25 ± 0.30%. The conversion efficiencies of the source in-bands of 5 and 12 mirror systems at two wavelengths of 10.8 and 11.2 nm have been evaluated; these efficiencies may be interesting for beyond extreme ultraviolet lithography.
Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source
We present optical coherence tomography (OCT) with 2 nm axial resolution using broadband soft X-ray radiation (SXR) from a compact laser plasma light source. The laser plasma was formed by the interaction of nanosecond laser pulses with a gaseous target in a double stream gas puff target approach. The source was optimized for efficient SXR emission from the krypton/helium gas puff target in the 2 to 5 nm spectral range, encompassing the entire “water-window” spectral range from 2.3 nm to 4.4 nm wavelength. The coherence parameters of the SXR radiation allowed for the OCT measurements of a bulk multilayer structure with 10 nm period and 40% bottom layer thickness to period ratio, with an axial resolution of about 2 nm and detect multilayer interfaces up to a depth of about 100 nm. The experimental data are in agreement with OCT simulations performed on ideal multilayer structure. In the paper, detailed information about the source, its optimization, the optical system, OCT measurements and the results are presented and discussed.
Development and characterization of a laser-plasma soft X-ray source for contact microscopy
In this work, we present a compact laser-produced plasma source of X-rays, developed and characterized for application in soft X-ray contact microscopy (SXCM). The source is based on a double stream gas puff target, irradiated with a commercially available Nd:YAG laser, delivering pulses with energy up to 740 mJ and 4 ns pulse duration at 10 Hz repetition rate. The target is formed by pulsed injection of a stream of high-Z gas (argon) into a cloud of low Z-gas (helium) by using an electromagnetic valve with a double nozzle setup. The source is designed to irradiate specimens, both in vacuum and in helium atmosphere with nanosecond pulses of soft X-rays in the ‘‘water-window” spectral range. The source is capable of delivering a photon fluence of about 1.09 x 103 photon/µm2/pulse at a sample placed in vacuum at a distance of about 20 mm downstream the source. It can also deliver a photon fluence of about 9.31 x 102 – photons/µm2/pulse at a sample placed in a helium atmosphere at the same position. The source design and results of the characterization measurements as well as the optimization of the source are presented and discussed. The source was successfully applied in the preliminary experiments on soft X-ray contact microscopy and images of microstructures and biological specimens with ~80 nm half-pitch spatial resolution, obtained in helium atmosphere, are presented.
XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets
Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.
EUV spectra from highly charged terbium ions in optically thin and thick plasmas
We have observed extreme ultraviolet (EUV) spectra from terbium (Tb) ions in optically thin and thick plasmas for a comparative study. The experimental spectra are recorded in optically thin, magnetically confined torus plasmas and dense laser-produced plasmas (LPPs). The main feature of the spectra is quasicontinuum emission with a peak around 6.5-6.6 nm, the bandwidth of which is narrower in the torus plasmas than in the LPPs. A comparison between the two types of spectra also suggests strong opacity effects in the LPPs. A comparison with the calculated line strength distributions gives a qualitative interpretation of the observed spectra.
Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination
In this paper, experiments are described in which cylindrical vacuum insulator samples and samples inclined at 45° relative to the cathode were stressed by microsecond timescale high-voltage pulses and illuminated by focused UV laser beam pulses. In these experiments, we were able to distinguish between flashover initiated by the laser producing only photo-electrons and when plasma is formed. It was shown that flashover is predominantly initiated near the cathode triple junction. Even dense plasma formed near the anode triple junction does not necessarily lead to vacuum surface flashover. The experimental results directly confirm our conjecture that insulator surface breakdown can be avoided by preventing its initiation [J. G. Leopold et al., Phys. Rev. ST Accel. Beams 10, 060401 (2007)] and complement our previous experimental results [J. Z. Gleizer et al., IEEE Trans. Dielectr. Electr. Insul. 21, 2394 (2014) and J. Z. Gleizer et al., J. Appl. Phys. 117, 073301 (2015)].
High intensity nanosecond laser systems
| Model | Repetition rate | Pulse duration | Max pulse energy | Special feature |
|---|---|---|---|---|
| NanoFlux SLM | 10 Hz | 2 – 25 ns | 10 J | High energy Single Longitudinal Mode (SLM) Nd:YAG lasers |
| NanoFlux MM | 10 Hz | 5 ± 1 ns | 10 J | High energy Multi-Mode Nd:YAG lasers |
| NanoFlux HP | 1 kHz | 2 – 500 ns | 5 J | High power DPSS ns amplifier systems |
| NanoFlux AWG | 10 Hz | 0.15 – 20 ns | 10 J | High energy systems with temporal pulse shaping (AWG) |
| Model | Repetition rate | Pulse duration | Max pulse energy | Special feature |
|---|
Downloads
Publications
Characterization and calibration of the Thomson scattering diagnostic suite for the C-2W field-reversed configuration experiment
The new C-2W Thomson scattering (TS) diagnostic consists of two individual subsystems for monitoring electron temperature (Te) and density (ne): one system in the central region is currently operational, and the second system is being commissioned to monitor the open field line region. Validating the performance of the TS’s custom designed system components and unique calibration of the detection system and diagnostic as a whole is crucial to obtaining high precision Te and ne profiles of C-2W’s plasma. The major components include a diode-pumped Nd:YAG laser which produces 35 pulses at up to 20 kHz, uniquely designed collection lenses with a fast numerical aperture, and uniquely designed polychromators with filters sets to optimize a Te ranging from 10 eV to 2 keV. This paper describes the design principles and techniques used to characterize the main components of the TS diagnostic on C-2W, as well as the results of Rayleigh scattering calibrations performed for the whole system response.
Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm
We optimized the parameters of a laser-produced plasma source based on a solid-state Nd: YAG laser (λ = 1.06 nm, pulse duration 4 ns, energy per pulse up to 500 mJ, repetition rate 10 Hz, lens focus distance 45 mm, maximum power density of laser radiation in focus 9 × 1011 W/cm2) and a double-stream Xe/He gas jet to obtain a maximum of radiation intensity around 11 nm wavelength. It was shown that the key factor determining the ionization composition of the plasma is the jet density. With the decreased density, the ionization composition shifts toward a smaller degree of ionization, which leads to an increase in emission peak intensity around 11 nm. We attribute the dominant spectral feature centred near 11 nm originating from an unidentified 4d-4f transition array in Xe+10…+13 ions. The exact position of the peak and the bandwidth of the emission line were determined. We measured the dependence of the conversion efficiency of laser energy into an EUV in-band energy with a peak at 10.82 nm from the xenon pressure and the distance between the nozzle and the laser focus. The maximum conversion efficiency (CE) into the spectral band of 10 – 12 nm measured at a distance between the nozzle and the laser beam focus of 0.5 mm was CE = 4.25 ± 0.30%. The conversion efficiencies of the source in-bands of 5 and 12 mirror systems at two wavelengths of 10.8 and 11.2 nm have been evaluated; these efficiencies may be interesting for beyond extreme ultraviolet lithography.
Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system
We present a broadband optical parametric chirped pulse amplification (OPCPA) system delivering 4 J pulses at a repetition rate of 5 Hz. It will serve as a frontend for the 1.5 kJ, <150 fs, 10 PW laser beamline currently under development by a consortium of National Energetics and Ekspla. The spectrum of the OPCPA system is precisely controlled by arbitrarily generated waveforms of the pump lasers. To fully exploit the high flexibility of the frontend, we have developed a 1D model of the system and an optimization algorithm that predicts suitable pump waveform settings for a desired output spectrum. The OPCPA system is shown to have high efficiency, a high-quality top-hat beam profile, and an output spectrum demonstrated to be shaped consistently with the theoretical model.
Thomson scattering systems on C-2W field-reversed configuration plasma experiment
TAE Technologies’ newly constructed C-2W experiment aims to improve the ion and electron temperatures in a sustained field-reversed configuration plasma. A suite of Thomson scattering systems has been designed and constructed for electron temperature and density profile measurements. The systems are designed for electron densities of 1 × 1012 cm−3 to 2 × 1014 cm−3 and temperature ranges from 10 eV to 2 keV. The central system will provide profile measurements of Te and ne at 16 radial locations from r = −9 cm to r = 64 cm with a temporal resolution of 20 kHz for 4 pulses or 1 kHz for 30 pulses. The jet system will provide profile measurements of Te and ne at 5 radial locations in the open field region from r = −5 cm to r = 15 cm with a temporal resolution of 100 Hz. The central system and its components have been characterized, calibrated, installed, and commissioned. A maximum-likelihood algorithm has been applied for data processing and analysis.
Development and characterization of a laser-plasma soft X-ray source for contact microscopy
In this work, we present a compact laser-produced plasma source of X-rays, developed and characterized for application in soft X-ray contact microscopy (SXCM). The source is based on a double stream gas puff target, irradiated with a commercially available Nd:YAG laser, delivering pulses with energy up to 740 mJ and 4 ns pulse duration at 10 Hz repetition rate. The target is formed by pulsed injection of a stream of high-Z gas (argon) into a cloud of low Z-gas (helium) by using an electromagnetic valve with a double nozzle setup. The source is designed to irradiate specimens, both in vacuum and in helium atmosphere with nanosecond pulses of soft X-rays in the ‘‘water-window” spectral range. The source is capable of delivering a photon fluence of about 1.09 x 103 photon/µm2/pulse at a sample placed in vacuum at a distance of about 20 mm downstream the source. It can also deliver a photon fluence of about 9.31 x 102 – photons/µm2/pulse at a sample placed in a helium atmosphere at the same position. The source design and results of the characterization measurements as well as the optimization of the source are presented and discussed. The source was successfully applied in the preliminary experiments on soft X-ray contact microscopy and images of microstructures and biological specimens with ~80 nm half-pitch spatial resolution, obtained in helium atmosphere, are presented.
XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets
Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.
EUV spectra from highly charged terbium ions in optically thin and thick plasmas
We have observed extreme ultraviolet (EUV) spectra from terbium (Tb) ions in optically thin and thick plasmas for a comparative study. The experimental spectra are recorded in optically thin, magnetically confined torus plasmas and dense laser-produced plasmas (LPPs). The main feature of the spectra is quasicontinuum emission with a peak around 6.5-6.6 nm, the bandwidth of which is narrower in the torus plasmas than in the LPPs. A comparison between the two types of spectra also suggests strong opacity effects in the LPPs. A comparison with the calculated line strength distributions gives a qualitative interpretation of the observed spectra.
Enhancement of Laser-Induced Breakdown Spectroscopy (LIBS) Detection Limit Using a Low-Pressure and Short-Pulse Laser-Induced Plasma Process
Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/ INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.
Tunable wavelength nanosecond lasers
| Model | Wavelength range | Repetition rate | Linewidth | Special feature |
|---|---|---|---|---|
| NT230 | 192 – 2600 nm | 100 Hz | < 5 cm‑1 | High, up to 15 mJ pulse energy from OPO. DPSS lasers |
| NT240 | 210 – 2600 nm | 1 kHz | < 5 cm‑1 | Broadly tunable kHz pulsed DPSS lasers |
| NT250 | 335 – 2600 nm | 1 kHz | < 10 cm‑1 | UV-NIR range DPSS lasers |
| NT260 | 192 – 2600 nm | 10 kHz | < 3 cm‑1 | Narrow linewidth at kHz repetition rate. DPSS lasers |
| NT270 | 2500 – 4475 nm | 1 kHz | < 10 cm‑1 | Wide IR tuning range at kHz repetition rate. DPSS lasers |
| NT340 | 192 – 4400 nm | 20 Hz | < 5 cm‑1 | Wide range of modifications. Flash-lamp pump lasers |
| PhotoSonus X | 650 – 2600 nm | 100 Hz | < 10 cm‑1 | Tailored for photoacoustic imaging |
| PhotoSonus M | 330 – 2300 nm | 20 Hz | < 10 cm‑1 | Mobile, tailored for photoacoustic imaging |
| PhotoSonus T | 330 – 2300 nm | 10 Hz | < 10 cm‑1 | Tailored for photoacoustic imaging |
| Model | Wavelength range | Repetition rate | Linewidth | Special feature |
|---|
Downloads
Publications
A three-dimensional photoacoustic and ultrasound automated breast volume scanner (PAUS-ABVS) for breast cancer patients
Breast cancer screening with mammography is less effective in women with dense breast tissue, prompting the use of ultrasound (US) imaging. While two- (2D) and three-dimensional (3D) US improve cancer detection, their low specificity leads to frequent unnecessary biopsies. Operator dependence on 2D US has led to the development of 3D automated breast volume scanners (ABVS), but challenges remain in distinguishing benign from malignant lesions. We developed a 3D photoacoustic and ultrasound (PAUS)–ABVS system that integrates a large field-of-view, 768-element transducer to improve diagnostic accuracy. In a clinical study of 61 patients with 36 benign and 30 malignant lesions, multispectral photoacoustic imaging was used to measure blood volume and oxygen saturation within lesions. When combined with standard US BI-RADS (breast imaging reporting and data system) scores, the system achieved a sensitivity of 96.7% and specificity of 66.7%. This performance matched the best outcomes of 2D PAUS and outperformed conventional US. Our results suggest that the PAUS-ABVS can support more accurate breast cancer diagnosis while reducing unnecessary biopsies.
Au/Fe/Au trilayer nanodiscs as theranostic agents for magnet-guided photothermal, chemodynamic therapy and ferroptosis with photoacoustic imaging
Image-guided phototheranostics, including photothermal therapy and photoacoustic imaging using plasmonic nanoparticles, has attracted attention due to its remarkable photothermal conversion effects. In particular, considering the several benefits of biocompatibility, unique plasmon resonance, and tunable optical properties, gold nanoparticles of various shapes have been widely utilized as phototheranostic agents. However, applications in the near-infrared window have been limited due to the tendency of anisotropic gold nanoparticles to transform into spherical shapes under repetitive laser irradiation, which cause a shift in the localized surface plasmon resonance peak and reduces photothermal stability. To address these limitations, we introduce an Fe layer between Au nanodiscs to synthesize Au/Fe/Au trilayer uniform structured nanodiscs (AuFeAuNDs) using nanoimprint lithography. This approach aims to improve photostability and endow a magnetic targeting ability, enabling more accurate spatiotemporal regulation. The AuFeAuNDs primarily function as photothermal therapy agents and also serve as chemodynamic agents via the Fenton reaction specifically within the tumor microenvironment, which induces ferroptosis. Moreover, the AuFeAuNDs trigger immunogenic cell death following photothermal therapy. This study demonstrates applications of magnetic-targeted AuFeAuNDs for photoacoustic imaging-guided, spatiotemporal-controlled photothermal therapy, chemodynamic therapy, and immune modulation to bolster anti-tumor immune responses in cancer treatment.
Localized measurement of ultrasonic waves using a Fabry–Perot sensor illuminated by a Bessel beam
Fabry–Perot (FP) ultrasound sensors are a class of optical ultrasound sensors used in photoacoustic tomography (PAT) and other applications. Conventionally, an FP ultrasound sensor comprises an ultrasonically compressible planar microcavity, locally interrogated by a focused Gaussian beam. One way to increase the sensitivity could be to replace this beam with a Bessel beam. The rationale is twofold. First, as a Bessel beam’s wavefront better matches the modes of the planar microcavity, this could increase the -factor, leading to higher sensitivity. Second, as a Bessel beam provides a focused spatial structure—a central core surrounded by concentric rings—it might retain the ability to locally interrogate the sensor. To explore this idea, we developed an experimental system featuring a custom FP ultrasound sensor interrogated by a Bessel beam and evaluated its on-axis sensitivity, directivity, and image resolution when performing PAT. For comparison, we measured the same characteristics using a conventional focused Gaussian beam with a spot size similar to the core of the Bessel beam. As anticipated, the Bessel beam provided a higher ultrasonic on-axis sensitivity. However, the directivity and spatial resolution were degraded, suggesting that the Bessel beam yielded a larger acoustic element. We conclude that it is feasible to increase the sensitivity of an FP ultrasound sensor using a Bessel beam. Further work is required to establish whether differently designed Bessel beams could concurrently offer a smaller acoustic element.
Non-Invasive Photoacoustic Cerebrovascular Monitoring of Early-Stage Ischemic Strokes In Vivo
Abstract Early-stage stroke monitoring enables timely intervention that is crucial to minimizing neuronal damage and increasing the extent of recovery. By monitoring collateral circulation and neovascularization after ischemic stroke, the natural recovery process can be better understood, optimize further treatment strategies, and improve the prognosis. Photoacoustic computed tomography (PACT), a non-invasive imaging modality that captures multiparametric high-resolution images of vessel structures, is well suited for evaluating cerebrovascular structures and their function. Here 3D multiparametric transcranial PACT is implemented to monitor the early stage of a photothrombotic (PT)-stroke model in living rats. New vessels in the PT-induced region are successfully observed using PACT, and these observations are confirmed by histology. Then, using multiparametric PACT, it is found that the SO2 in the ischemic area decreases while the SO2 in newly formed vessels increases, and the SO2 in the PT region also recovers. These findings demonstrate PACT\’s remarkable ability to image and monitor cerebrovascular morphologic and physiological changes. They highlight the usefulness of whole-brain PACT as a potentially powerful tool for early diagnosis and therapeutic decision-making in treating ischemic stroke.
Superfluorescent upconversion nanoparticles as an emerging second generation quantum technology material
Superfluorescence (SF) in lanthanide doped upconversion nanoparticles (UCNPs) is a room-temperature quantum phenomenon, first discovered in 2022. In a SF process, the many emissive lanthanide ions within a single UCNP are coherently coupled by an ultra-short (ns or fs) high-power excitation laser pulse. This leads to a superposition of excited emissive states which decrease the emissive lifetime of the UCNP by a factor proportional to the square of the number of lanthanide ions which are coherently coupled. This results in a dramatic decrease in UCNP emission lifetime from the μs regime to the ns regime. Thus SF offers a tantalizing prospect to achieving superior upconversion photon flux in upconversion materials, with potential applications such as imaging and sensing. This perspective article contextualizes how SF-UCNPs can be regarded as a second generation quantum technology, and notes several challenges, opportunities, and open questions for the development of SF-UCNPs.
Three-Dimensional Whole-Body Small Animal Photoacoustic Tomography Using a Multi-View Fabry-Perot Scanner
Photoacoustic tomography (PAT) has the potential to become a widely used imaging tool in preclinical studies of small animals. This is because it can provide non-invasive, label free images of whole-body mouse anatomy, in a manner which is challenging for more established imaging modalities. However, existing PAT scanners are limited because they either do not implement a full 3-D tomographic reconstruction using all the recorded photoacoustic (PA) data and/or do not record the available 3-D PA time-series data around the mouse with sufficiently high spatial resolution ( ∼100μ m), which compromises image quality in terms of resolution, imaging depth and the introduction of artefacts. In this study, we address these limitations by demonstrating an all-optical, multi-view Fabry-Perot based scanner for whole body small animal imaging. The scanner densely samples the acoustic field with a large number of detection points (>100,000), evenly distributed around the mouse. The locations of the detection points were registered onto a common coordinate system, before a tomographic reconstruction using all the recorded PA time series was implemented. This enabled the acquisition of high resolution, whole-body PAT images of ex-vivo mice, with anatomical features visible across the entire cross section.
A fast all-optical 3D photoacoustic scanner for clinical vascular imaging
The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry–Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
Analysis of characteristics and photoacoustic imaging performance of exogenous contrast agents
Photoacoustic imaging offers high spatial resolution, imaging depth, and molecular information, emerging as a promising biomedical imaging modality. In particular, when using exogenous contrast, the advantages of photoacoustic imaging can be more effectively utilized in preclinical and clinical studies. We provide a novel approach to screen and identify efficient photoacoustic performance as contrast agents of the metals. To accomplish this, we introduce a novel figure of merit that quantifies the potential performance of contrast agents. As a result of the quantification, we discover that Ti nanodiscs outperform Pt nanodiscs in terms of photoacoustic ability, which shows a similar level to Au nanodiscs. We compare these results by performing a photoacoustic phantom imaging experiment. The photoacoustic performance of the three materials is compared by comparing the signal intensity of the materials measured on the photoacoustic image for various wavelengths. The imaging results further support our findings, demonstrating the superior performance of Ti nanodiscs as contrast agents.
Exploring salinity induced adaptations in marine diatoms using advanced photonic techniques
Photonic-based methods are crucial in biology and medicine due to their non-invasive nature, allowing remote measurements without affecting biological specimens. The study of diatoms using advanced photonic methods remains a relatively underexplored area, presenting significant opportunities for pioneering discoveries. This research provides a comprehensive analysis of marine diatoms, specifically Nitzschia sp., across varying salinity levels, integrating fluorescence lifetime imaging microscopy (FLIM), combined photoacoustic and fluorescence tomographies (PAFT), and ultrastructural examinations using transmission electron microscopy. Key findings include a systematic shift in the mean fluorescence lifetime from 570 ps at 20‰ to 940 ps at 80‰, indicating functional adaptations in chlorophyll molecules within light-harvesting complexes. At 60‰ salinity, anomalies are observed in the development of silica valves and polysaccharide layers, suggesting abnormalities in valve morphogenesis. Lipid droplets within the cells display a minimum diameter at 40‰, indicating metabolic adjustments to osmotic stress. The intensity of both fluorescence and photoacoustic signals increases with increasing salinity levels. These insights enhance understanding of the ecological implications of salinity stress on diatom communities and pave the way for future research on leveraging the unique adaptive mechanisms of microalgae for environmental monitoring and sustainable biotechnological applications.
Hybrid Photoacoustic Ultrasound Imaging System for Cold-Induced Vasoconstriction and Vasodilation Monitoring
Lewis hunting reaction refers to the alternating cold-induced vasoconstriction and dilation in extremities, whose underlying mechanism is complex. While numerous studies reported this intriguing phenomenon by measuring cutaneous temperature fluctuation under cold exposure, few of them tracked peripheral vascular responses in real-time, lacking a non-invasive and quantitative imaging tool. To better monitor hunting reaction and diagnose relevant diseases, we developed a hybrid photoacoustic ultrasound (PAUS) tomography system to monitor finger vessels’ dynamic response to cold, together with simultaneous temperature measurement. We also came out a standard workflow for image analysis with self-defined indices. In the small cohort observational study, vascular changes in the first cycle of hunting reaction were successfully captured by the image series and quantified. Time difference between vasodilation and temperature recovery was noticed and reported for the first time, thanks to the unique capability of the PAUS imaging system in real-time and continuous vascular monitoring. The developed imaging system and indices enabled more objective and quantitative monitoring of peripheral vascular activities, indicating its great potential in numerous clinical applications.